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DATA UNCERTAINTY IN OPTIMIZATION

♣ Consider a generic optimization problem of the form

min
x

{f (x, ζ) : F (x, ζ) ≤ 0}

x ∈ Rn: decision vector ζ ∈ RM : data

♠ More often than not the data ζ is uncertain – not known exactly when
problem is to be solved.
Sources of data uncertainty:
• part of the data is measured/estimated ⇒ estimation errors
• part of the data (e.g., future demands/prices) does not exist when

problem is solved ⇒ prediction errors
• some components of a solution cannot be implemented exactly as

computed ⇒ implementation errors which in many models can be mim-
icked by appropriate data uncertainty
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♠ With traditional modelling methodology,
• “small” data uncertainty is just ignored and the problem is solved

for “nominal” values of the data ⇒ nominal optimal solution.

Fact: In many situations, small data perturbations can make the nominal
optimal solution severely infeasible and/or “highly expensive” in terms of
the objective, and thus practically meaningless.

Example: NETLIB Case Study.

• We substitute into LP problems from NETLIB Library their opti-
mal solutions as found by CPLEX 6.0 and then perturb at random
“ugly coefficients” of inequality constraints, like -1.353783, by small
margin in order to find out how the nominal solution can withstand
data perturbations.

• With 0.01% perturbations, in 19 of totally ≈ 100 NETLIB prob-
lems the nominal solution violated some of the perturbed constraints
by 50% or more.
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♠ With traditional modelling methodology,
• “large” data uncertainty is modelled in a stochastic fashion and

then processed via Stochastic Programming techniques

Fact: In many cases, it is difficult to specify reliably the distribution of
uncertain data and/or to process the resulting Stochastic Programming
program.

♠ The ultimate goal of Robust Optimization is to take into account data
uncertainty already at the modelling stage in order to “immunize”
solutions against uncertainty.
• In contrast to Stochastic Programming, Robust Optimization does

not assume stochastic nature of the uncertain data (although can uti-
lize, to some extent, this nature, if any).
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“NON-ADJUSTABLE” ROBUST OPTIMIZATION:
Robust Counterpart of Uncertain Problem

min
x

{f (x, ζ) : F (x, ζ) ≤ 0} (U)

♣ The initial (“Non-Adjustable”) Robust Optimization paradigm (Soys-
ter ’73, B-T&N ’97–, El Ghaoui et al. ’97–, Bertsimas et al. ’03–,...)
is based on the following tacitly accepted assumptions:

A.1. All decision variables in (U) represent “here and now” decisions
which should get specific numerical values as a result of solving the
problem and before the actual data “reveals itself”.

A.2. The uncertain data are “unknown but bounded”: one can spec-
ify an appropriate (typically, bounded) uncertainty set U ⊂ RM of pos-
sible values of the data. The decision maker is fully responsible for
consequences of the decisions to be made when, and only when, the
actual data is within this set.

A.3. The constraints in (U) are “hard” – we cannot tolerate violations
of constraints, even small ones, when the data is in U .
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min
x

{f (x, ζ) : F (x, ζ) ≤ 0}

ζ ∈ U
(U)

♠ Conclusions:
• The only meaningful candidate solutions are the robust ones – those

which remain feasible whatever be a realization of the data from the
uncertainty set:

x robust feasible ⇔ F (x, ζ) ≤ 0 ∀ζ ∈ U

• “Robust optimal” solution to be used is a robust solution with the
smallest possible guaranteed value of the objective, that is, the optimal
solution of the optimization problem

min
x,t

{t : f (x, ζ) ≤ t, F (x, ζ) ≤ 0 ∀ζ ∈ U} (RC)

called the Robust Counterpart of (U).
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(U) : min
x

{f (x, ζ) : F (x, ζ) ≤ 0} , ζ ∈ U

⇓
(RC) : min

x,t
{t : f (x, ζ) ≤ t, F (x, ζ) ≤ 0 ∀ζ ∈ U}

Note: (RC) is a semi-infinite problem and as such can be difficult even
when all instances of (U) are nice convex programs. However:

♣ There are generic cases (most notably, uncertain Linear Pro-
gramming problems with computationally tractable uncertainty
sets) when (RC) is computationally tractable.

♣ What can we gain? – In our NETLIB Case Study, applying the Robust
Counterpart methodology to “immunize” solutions against 0.1% data uncertainty,
we always succeeded, and the price of robustness, in terms of the objective, was
never greater than 1%.
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ADDING ADJUSTABILITY:
Affinely Adjustable Robust Counterpart

• “A.1. All decision variables in uncertain problem represent “here and now”
decisions”...

♣ Assumption A.1 is not satisfied in many applications:
• In Dynamical Decision Making, some of xi can represent “wait and see”

decisions to be made when the uncertain data become (partially) known
and thus can be allowed to depend on (part of) the uncertain data.

Example: In an inventory affected by uncertain demand, orders
of day t can depend on actual demands in days 1, ..., t − 1.

• Some of xi can be “analysis variables” not representing decisions at all and
thus can be allowed to depend on the uncertain data.

Example: When converting a convex constraint ∑

i
|aT

i x − bi| ≤ 1

with uncertain data ai, bi into the Linear Programming form

−yi ≤ aT
i x − bi ≤ yi,

∑

i
yi ≤ 1

the “certificates” yi can be allowed to depend on the actual data.
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min
x

{f (x, ζ) : F (x, ζ) ≤ 0} (U)

♠ A natural way to relax Assumption A.1 is
— to allow for every decision variable xj to depend on a prescribed

portion of the uncertain data:

xj = Xj(Pjζ)
[Pj : given matrices]

— to seek for the decision rules {Xj(·)} which are robust feasible and
optimize the guaranteed value of the objective. The resulting Adjustable
Robust Counterpart of the uncertain problem is the infinite-dimensional
optimization program

min
{Xj(·)}

n
j=1,t




t :

f (X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ t

F (X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ 0




∀ζ ∈ U





(ARC)
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min
x

{f (x, ζ) : F (x, ζ) ≤ 0} , ζ ∈ U (U)

min
x,t




t :

f (x, ζ) ≤ t

F (x, ζ) ≤ 0




∀ζ ∈ U





(RC)

min
{Xi(·)}

n
i=1,t




t :

f (X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ t

F (X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ 0




∀ζ ∈ U





(ARC)

♠ (ARC) becomes (RC) in the trivial case when Pi = 0, i = 1, ..., m and
in the case of uncertain LP with constraint-wise uncertainty:

min
x

{
cT
ζ0x : aT

i,ζix ≤ bi,ζi, i = 1, ..., m, Ax ≤ b
}
, ζ i ∈ U i, i = 0, ..., m (U)

• all cζ0, ai,ζi, bi,ζi are affine in ζ, • all Ui are convex compact sets,
• the set {x : Ax ≤ b} is bounded.

♠ In general, (ARC) is essentially less conservative than (RC)

♣ Major drawback of (ARC): severe computational intractability al-
ready in the case of uncertain general-type LP’s.

Seemingly the only way to process ARC is Dynamic Programming
⇒ severe limitations on problem’s structure and sizes.
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min
x

{f (x, ζ) : F (x, ζ) ≤ 0} , ζ ∈ U (U)

⇓

min
{Xj(·)}

n
j=1,t




t :

f (X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ t

F (X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ 0




∀ζ ∈ U





(ARC)

♣ How to cope with computational intractability of (ARC):

• Let us restrict Xj(·) to be simple – just affine:

Xj(Pjζ) = ξj + ηT
j Pjζ (Aff)

• With decision rules (Aff), the infinite-dimensional problem (ARC)
becomes the Affinely Adjustable Robust Counterpart of (U) – the semi-
infinite problem

min
{ξj,ηj}

n
j=1,t




t :

f (ξ1 + η1
TP1ζ, ..., ξn + ηn

TPnζ, ζ) ≤ t

F (ξ1 + η1
TP1ζ, ..., ξn + ηn

TPnζ, ζ) ≤ 0




∀ζ ∈ U





(AARC)

[A.B-T, A. Goryashko, E. Gustlizer, A.N ’03]
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♣ Uncertain problems with convex inclusion constraints are of the form

min
x

{
cT [ζ ]x : A[ζ ]x − b[ζ ] ∈ Q

}
(U)

where
• (c[ζ ], A[ζ ], b[ζ ]) are affinely parameterized by the data vector ζ

• Q is a given closed convex set (common for all instances of the
uncertain problem)

Examples: Uncertain Linear/Conic Quadratic/Semidefinite programs.

♣ For uncertain problem with convex inclusion constraints the Affinely
Adjustable Robust Counterpart is the semi-infinite convex program

min
χ=({ξj,ηj}

n
j=1,t)

{t : A[χ, ζ ] ≡




t −
n∑

j=1
cj[ζ ] ·

[
ξj + ηj

TPjζ
]

n∑

j=1

[
ξj + ηj

TPjζ
]
· Aj[ζ ] − b[ζ ]



∈ R+ ×Q

︸ ︷︷ ︸
Q+

∀ζ ∈ U}

(AARC)
♠ Definition: (U) has fixed recourse, if for every j such that xj is ad-
justable (that is, Pj 6= 0), both cj[ζ ] and Aj[ζ ] are certain – independent
of ζ.
⇒ The mapping A[χ, ζ ] is bi-affine in χ, ζ.
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min
x

{
cT [ζ ]x : A[ζ ]x − b[ζ ] ∈ Q

}
(U)

⇓
min

χ=({ξj,ηj}
n
j=1,t)

{
eTχ : A[χ, ζ ] ∈ Q+ ∀ζ ∈ U

}
(AARC)

Proposition. Assume that
A. Q = RN

+ ,
and

B. (U) has fixed recourse.
Then (AARC) is computationally tractable whenever U is so. In particular,
when U is a polyhedral set given as

U = {ζ : ∃ν : Pζ + Qν + r ≥ 0} ,

then (AARC) is equivalent to an explicit LP program which can be obtained in
polynomial time from the data specifying A[·, ·], Q and U .

Remark I. Preserving assumption B and assuming that U is an ellip-
soid, one can relax assumption A by allowing Q to be a direct product
of Second Order cones.
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Remark II. Preserving assumption A and removing assumption B,
one still has a “tight approximation” result:

Proposition. Let Q = RN
+ , let U be the intersection of L ellipsoids centered at

the origin:

U = U(ρ) =
{
ζ : ζTQℓζ ≤ ρ2, ℓ = 1, ..., L

}
[Qℓ � 0,

∑

ℓ
Qℓ ≻ 0]

and let
Opt

AARC
(ρ) = min

χ

{
eTχ : A[χ, ζ ] ∈ Q+ ∀ζ ∈ U(ρ)

}
.

Then for an explicit semidefinite program (SDP[ρ]) readily given by A[·, ·] and
{Qℓ}

L
ℓ=1 it holds:

(i) every feasible solution to (SDP[ρ]) is feasible for (AARC[ρ]) as well;

(ii) Opt
AARC

(ρ) ≤ Opt(SDP[ρ]) ≤ Opt
AARC

(ϑρ) with

ϑ ≤ O(1) ln(L).
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♣ Example: Flexible Supplier-Retailer contracts via AARC [A.B-T,
B. Golany, A.N., J.-Ph. Vial ’05]

• The story: A single-product inventory affected by uncertain
demand should be run over the period of T months. At the
very beginning, inventory management commits itself for cer-
tain monthly replenishment orders. These orders should not be
followed exactly, but there are penalties for deviations of actual
orders from the commitments.
• The goal: To specify commitments (non-adjustable variables)
and actual replenishment orders (adjustable variables allowed to
depend on past demands) in order to minimize the overall inven-
tory management cost which includes:

• cost of replenishment,
• holding cost,
• penalties for backlogged demands,
• penalties for deviations of actual orders from commit-
ments
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♠ With no uncertainty in the demands, the Commitments problem is
just an LP program. Assuming the demand uncertain, it becomes an
uncertain LP program with fixed recourse
⇒ the Affinely Adjustable RC is computationally tractable, provided that the
uncertainty set is so.
• The Adjustable RC asks to minimize the worst case, over all de-

mand trajectories from a given uncertainty set, inventory management
cost over commitments and decision rules specifying the actual replen-
ishment orders as functions of past demands.
• The Affinely Adjustable RC asks to minimize the same objective

over commitments and decision rules specifying the actual replenish-
ment orders as affine functions of the past demands.
♠ In contrast to ARC, which suffers from “curse of dimensionality”, AARC is just
an explicit LP program with polynomial in T number of variables and constraints,
provided that the uncertainty set is polyhedral.

Computational tractability of AARC is preserved when adding new linear con-
straints, e.g., when forbidding backlogged demand, adding bounds on instant and
cumulative orders, etc.
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♠ In the Commitments problem, AARC demonstrates remarkably nice
behaviour. In particular,

• among ≈ 300 different data sets with T = 12, we found just 4
where the optimal value of ARC (still available when T = 12) was
better than the one of AARC, and the difference was less than
4%;

• the AARC results in guaranteed management costs which can
be by as much as 30% less than those yielded by RC.

Uncertainty Opt(ARC) Opt(AARC) Opt(RC)
%%

10 13531.8 13531.8(+0.0%) 15033.4(+11.1%)
20 15063.5 15063.5(+0.0%) 18066.7(+19.9%)
30 16595.3 16595.3(+0.0%) 21100.0(+27.1%)
40 18127.0 18127.0(+0.0%) 24300.0(+34.1%)
50 19658.7 19658.7(+0.0%) 27500.0(+39.9%)
60 21190.5 21190.5(+0.0%) 30700.0(+44.9%)
70 22722.2 22722.2(+0.0%) 33960.0(+49.5%)
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CONTROLLING CONSTRAINT VIOLATIONS
OUTSIDE OF UNCERTAINTY SET:
Comprehensive Robust Counterpart

• “A.2. ... The decision maker is fully responsible for consequences of the
decisions to be made when, and only when, the actual data is within a given
bounded uncertainty set.”

♣ In some applications, Assumption A.2 is too restrictive.

Example: Consider building a communication network with un-
certain information traffic demands. On special rare occasions,
these demands may become unusually high.

• including “large deviations” of the demand in the uncertainty
set could be too expensive...

• just ignoring “large deviations” could be too irresponsible...

♠ With “large deviations” in the data, it is natural to ensure
• required performance when uncertain data vary in their “normal

range” – a not too large uncertainty set U ;
• controlled deterioration of performance when the uncertain data are

outside of the uncertainty set.
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♣ A natural way to relax Assumption A.2 is as follows.
♠ Consider an uncertain problem with convex inclusion constraints

min
x

{
cT [ζ ]x : A[ζ ]x − b[ζ ] ∈ Q

}
(U)

♠ Assume that the set Z of all “physically possible” values of ζ is of the
form

Z = U + L
↑ ↑

convex compact closed convex cone

where U is the “normal range” of ζ.
♠ Let us say that affine decision rules

x = X(ξ, η; ζ) := (ξ1 + ηT
1 P1ζ, ..., ξn + ηT

n Pnζ)T

• form a robust feasible solution to (U) with global sensitivity α, if

∀(ζ ∈ Z) : dist(A[ζ ]X(ξ, η; ζ) − b[ζ ],Q) ≤ α dist(ζ,U|L) ≡ min
u∈U ,ℓ∈L
u+ℓ=ζ

‖ℓ‖.

• has robust objective value t ∈ R with global sensitivity α0, if

cT [ζ ]X(ξ, η; ζ) ≤ t + α0 dist(ζ,U|L)
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min
x

{
cT [ζ ]x : A[ζ ]x − b[ζ ] ∈ Q

}
(U)

♣ The Comprehensive Robust Counterpart of (U) [A.B-T,S. Boyd,A.N. ’05]
is the problem

min
{ξj,ηj},t




t :

cT [ζ ]X(ξ, η; ζ) − t ≤ α0 dist(ζ,U|L)

dist(A[ζ ]X(ξ, η; ζ) − b[ζ ],Q) ≤ α dist(ζ,U|L)




∀ζ ∈ Z = U + L





[
X(ξ, η; ζ) = (ξ1 + ηT

1 P1ζ, ..., ξn + ηT
n Pnζ)T

]

(CRC)
of minimizing, given the global sensitivities α0, α, the robust objective
value over robust feasible affine decision rules.

♠ Note:

• when ({ξj, ηj}, t) is feasible for (CRC) and ζ ∈ U , the decisions
xj = ξj + ηT

j Pjζ satisfy the constraints in (U) and make the value
of the objective ≤ t

• With L = {0}, (CRC) recovers the Affinely Adjustable Robust
Counterpart of (U). If, in addition, Pj = 0 for all j, (CRC) recov-
ers the Robust Counterpart of (U)
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• Extensions of CRC:

• In may cases, ζ and the constraints in (U) are “structured”:

D[ζ ]x − b[ζ ] ∈ Q ⇔ Di[ζ ]x − bi[ζ ] ∈ Qi, i = 1, ..., m
Z =

{
ζ = (ζ1, ..., ζk) : ζs ∈ Us + Ls, s = 1, ..., k

}

In these cases, it makes sense to use “structured” Comprehensive
Robust Counterpart

min
{ξj,ηj},t





t :

cT [ζ ]X(ξ, η; ζ) − t ≤
k∑

s=1
α0s dist(ζs,Us|Ls)

dist(Di[ζ ]X(ξ, η; ζ) − bi[ζ ],Qi) ≤
∑
s
αis dist(ζs,Us|Ls)

i = 1, ..., m
∀ζ ∈ Z = U + L









[
X(ξ, η; ζ) = (ξ1 + ηT

1 P1ζ, ..., ξn + ηT
n Pnζ)T

]

(SCRC)
• We can add more flexibility to (SCRC) by

— specifying different norms in different dist terms;
— treating αis as variables rather than given constants, re-
placing the objective t with a function of t and αis and adding
constraints on αis.
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♣ Computational tractability of (CRC)
♠ Assumptions:

• Qi are closed convex sets, Us are convex compacts, Ls are closed
convex cones;
• (U) has fixed recourse.

Under these assumptions, Comprehensive Robust Counterpart is of
the form

min
α∈Λ,χ

φ(χ, α)

s.t.

dist‖·‖i


Di0[χ] +

k∑

s=1
Dis[χ]ζs,Qi


 ≤

k∑

s=1
αis dist‖·‖is

(ζs,Us|Ls)

∀i = 0, 1, ..., m∀ (ζs ∈ Us + Ls, s = 1, ..., k)

(CRC)

with affine in χ vectors/matrices Dis[·].
♠ Observation: (CRC) is equivalent to the semi-infinite problem

min
α∈Λ,χ

φ(χ, α)

s.t. Di0[χ] +
k∑

s=1
Dis[χ]ζs ∈ Qi ∀i = 0, 1, ..., m∀ (ζs ∈ Us, s = 1, ..., k)

dist‖·‖i
(Dis[χ]ζs,RQi) ≤ αis‖ζ

s‖is ∀i = 0, 1, ..., m∀ (ζs ∈ Ls, s = 1, ..., k)

where RQi is the recessive cone of Qi.
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min
α∈Λ,χ

φ(χ, α)

s.t. Di0[χ] +
k∑

s=1
Dis[χ]ζs ∈ Qi ∀i = 0, 1, ..., m∀ (ζs ∈ Us, s = 1, ..., k) (a)

dist‖·‖i
(Dis[χ]ζs,Ri) ≤ αis‖ζ

s‖is ∀i = 0, 1, ..., m∀ (ζs ∈ Ls, s = 1, ..., k) (b)
(CRC)

Theorem. Assume that we are in polyhedral case:
(1) all Qi are polyhedral sets given as Qi = {y : Qiy ≥ qi},
(2) Qi and ‖ · ‖i are such that dist‖·‖i

(y,RQi) = max
1≤ν≤Ni

αT
iνy for given αiν,

(3) all Ls, s = 1, ..., k, are polyhedral cones given as Ls = {ζs : ∃us : Lsζ
s ≥ Rsu

s},
(4) all Us are polyhedral sets given as Us = {ζs : ∃vs : Usζ

s + Vsv
s ≥ ws},

(5) unit balls of all norms ‖ · ‖is are given as {ζs : ∃uis : Sisζ
s + Tisu

is ≥ ris}.
Then the system of semi-infinite constraints (a), (b) in (CRC) is equivalent to

an explicit finite system S of linear inequalities in χ, α and additional variables,
and S can be built in polynomial time from the data of the above representations
of Qi, Li, Ui, dist‖·‖i

(·,RQi), ‖ · ‖is.
Conditions (1) – (2) for sure take place when Qi are one-dimensional, that is,

the original problem (U) is an uncertain Linear Programming program with fixed
recourse.
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min
α∈Λ,χ

φ(χ, α)

s.t. Di0[χ] +
k∑

s=1
Dis[χ]ζs ∈ Qi ∀i = 0, 1, ..., m∀ (ζs ∈ Us, s = 1, ..., k)

dist‖·‖i
(Dis[χ]ζs,RQi) ≤ αis‖ζ

s‖is ∀i = 0, 1, ..., m∀ (ζs ∈ Ls, s = 1, ..., k)

Remark: Under assumptions
(1) all Qi are polyhedral sets given as Qi = {y : Qiy ≥ qi},
(2) Qi and ‖ · ‖i are such that dist‖·‖i

(yi,RQi) = max
1≤ν≤Ni

αT
iνy for given αiν,

the Comprehensive Robust Counterpart is efficiently solvable whenever Us, Ls

and Λ are computationally tractable, and the norms ‖ · ‖is and the objective
φ(·, ·) are efficiently computable, and Λ, φ(·) are convex.
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♣ Generic application: Affine control of uncertainty-affected Linear Dynami-
cal Systems.
♠ Consider Linear Time-Varying Dynamical system

xt+1 = Atxt + Btut + Rtdt

yt = Ctxt

x0 = z

(S)

• xt: state; • ut: control • yt: output;
• dt: uncertain input; • z: initial state
to be controlled over finite time horizon t = 0, 1, ..., T .
♠ Assume that a “desired behaviour” of the system is given by a system
of convex inclusions

Diw − bi ∈ Qi, i = 1, ..., m

on the state-control trajectory

w = (x0, x1, ..., xT+1, u0, u1, ..., uT ),

and the goal of the control is to minimize a given linear objective f (w).
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xt+1 = Atxt + Btut + Rtdt

yt = Ctxt

x0 = z

(S)

♠ Restricting ourselves with affine output-based control laws

ut = ξt0 +
t∑

τ=0
Ξtτyτ , (∗)

the problem of interest is

(!) Find an affine control law (∗) which ensures that the resulting state-
control trajectory w satisfies the system of convex inclusions

Diw − bi ∈ Qi, i = 1, ..., m

and minimizes, under this restriction, a given linear objective f (w).

Dynamics (S) makes w a known function of inputs d = (d0, d1, ..., dT ), the
initial state z and the parameters ξ of the control law (∗):

w = W (ξ; d, z).

Consequently, (!) is the optimization problem

min
ξ

{f (W (ξ; d, z) : DiW (ξ; d, z) − bi ∈ Qi, i = 1, ..., m} (U)
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open loop dynamics:





xt+1 = Atxt + Btut + Rtdt

yt = Ctxt

x0 = z

control law: ut = ξt0 +
t∑

τ=0
Ξtτyτ

⇓
w := (u0, ..., uT , x0, ..., xT+1) = W (ξ; d, z)

⇓
min

ξ
{f (W (ξ; d, z)) : DiW (ξ; d, z) − bi ∈ Qi, i = 1, ..., m} (U)

Note: Due to presence of uncertain input trajectory d and possible
uncertainty in the initial state, (U) is an uncertain problem.
Difficulty: While linearity of the dynamics and the control law make
W (ξ; d, z) linear in (d, z), the dependence of W (·, ·) on the parameters
ξ = {ξt0, Ξtτ}0≤τ≤t≤T of the control law is highly nonlinear
⇒ (U) is not a problem with convex inclusions, which makes inapplica-
ble the theory we have developed. In fact, (U) seems to be intractable
already when there is no uncertainty in d, z!
Remedy: suitable re-parameterization of affine control laws.
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♣ Affine control laws revisited. Consider a closed loop system along
with its model:

closed loop system: model:
xt+1 = Atxt + Btut+Rtdt x̂t+1 = Atx̂t + ̂

Btut

yt = Ctxt ŷt = Ctx̂t

x0 = z x̂0 = 0
ut = Ut(y0, ..., yt)

♠ Observation: We can run the model in an on-line fashion, so that
at time t, before the decision on ut should be made, we have in our
disposal purified outputs

vt = yt − ŷt.

♠ Fact I: Every transformation (d, z) 7→ w = (u0, ..., ut, x0, ..., xT+1) which
can be obtained from an affine control law based on outputs:

ut = ξt0 +
t∑

τ=0
Ξtτyτ (∗)

can be obtained from an affine control law based on purified outputs:

ut = ηt0 +
t∑

τ=0
Htτvτ (∗∗)

and vice versa.
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system: model:
xt+1 = Atxt + Btut+Rtdt x̂t+1 = Atx̂t + ̂

Btut

yt = Ctxt ŷt = Ctx̂t

x0 = z x̂0 = 0
control law:

vt = yt − ŷt

ut = ηt0 +
t∑

τ=0
Htτvτ (∗∗)

(S)

♠ Fact II: The state-control trajectory w = W (η; d, z) of (S) is affine in
(d, z) when the parameters η = {ηt0, Htτ}0≤τ≤t≤T of the control law (∗∗)
are fixed, and is affine in η when (d, z) is fixed.
♠ Corollary: With parameterization (∗∗) of affine control laws, problem of
interest becomes an uncertain optimization problem with convex inclusions, and
as such can be processed via the CRC approach.

In particular, in the case when Qi are one-dimensional, the CRC of the problem
of interest is computationally tractable, provided that the normal range U of (d, z)
and the associated cone L are so. If U , L and the norms used to measure distances
are polyhedral, CRC is just an explicit LP program.
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♣ Note: While the outlined approach “as it is” is aimed at building
optimal finite-horizon affine control, it can be combined with existing
Control techniques to get infinite-horizon stabilizing control laws with
desired transition characteristics.

♠ Illustration: Serial Multi-Level Inventory.
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t d t

3-Level Inventory. 1 – 3: warehouses; F: factory

• External demand is satisfied by inventory of level 1;
• Inventory of level i = 1, 2 is replenished from inventory of level

i + 1 = 2, 3, inventory of level 3 is replenished from factory;
• There is a delay of 2 time units in executing replenishment orders.
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♠ The 3-level inventory with 2-unit delays in executing replenishing
orders can be modelled as the Linear Dynamical system

xt+1 =




1 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0




xt +




0 0 0
−1 0 0

0 −1 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1




ut +




−1
0
0
0
0
0
0
0
0




dt

• x = (x1, ..., x9)
T – states (xi, i = 1, 2, 3, is the amount of product in

inventory of level i)
• u = (u1, u2, u3)T – replenishment orders
• dt – external demand.

♠ In serial multi-level inventories with delays, variations in external
demand usually are “amplified” – they result in much larger variations
of replenishment orders and inventory levels.

We have applied the CRC approach in combination with the stan-
dard Control techniques in order to moderate this phenomenon. The
resulting infinite-horizon affine control law makes the closed loop sys-
tem essentially more stable than the standard linear feedback control.
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z 7→ x gains z 7→ u gains
Magenta: CRC-based control
Blue: Feedback control yilded by Lyapunov Stability Synthesis

• z 7→ x gain at time t is the maximal ‖ · ‖∞-variation of the state
at time t which can be caused by a unit ‖ · ‖∞-variation in the
initial state.
• z 7→ u gain at time t is the maximal ‖·‖∞-variation of the control
at time t which can be caused by a unit ‖ · ‖∞-variation in the
initial state.
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d 7→ x gains d 7→ u gains
Magenta: CRC-based control
Blue: Feedback control yilded by Lyapunov Stability Synthesis

• d 7→ x gain at time t is the maximal ‖ · ‖∞-variation of the state
at time t which can be caused by a unit ‖ · ‖∞-variation in the
sequence d0, d1, ..., dt−1 of demands.
• d 7→ u gain at time t is the maximal ‖·‖∞-variation of the control
at time t which can be caused by a unit ‖ · ‖∞-variation in the
sequence d0, d1, ..., dt−1 of demands.
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Sample trajectories:

Inventory levels
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CRC Feedback
Controls
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CRC Feedback
• blue: #1 • green: #2 • red: #3 • yellow: inputs
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